Magnetostrophic balance as the optimal state for turbulent magnetoconvection.
نویسندگان
چکیده
The magnetic fields of Earth and other planets are generated by turbulent convection in the vast oceans of liquid metal within them. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of planetary rotation and magnetic fields through the Coriolis and Lorentz forces. Theory famously predicts that planetary dynamo systems naturally settle into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. Although this magnetostrophic theory correctly predicts the strength of Earth's magnetic field, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first, to our knowledge, turbulent, magnetostrophic convection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the dynamically optimal magnetostrophic state is the natural expression of turbulent planetary dynamo systems.
منابع مشابه
Rotating Magnetoconvection with Magnetostrophic Balance
The linear theory for the onset of convection in a rotating layer with an imposed vertical magnetic field is studied for large Taylor (Ta) and Chandrasekhar (Q) numbers. The velocity and magnetic field perturbations are in magnetostrophic balance. For small values of σ = ν/κ and ζ = η/κ, where ν, κ and η are the kinematic viscosity, and thermal and ohmic diffusivities, three oscillatory modes a...
متن کاملMagnetostrophic MRI in the Earth ’ s Outer Core
We show that a simple, modified version of the Magnetorotational Instability (MRI) can develop in the outer liquid core of the Earth, in the presence of a background shear. It requires either thermal wind, or a primary instability, such as convection, to drive a weak differential rotation within the core. The force balance in the Earth’s core is very unlike classical astrophysical applications ...
متن کاملTurbulent Flow over Cars
In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...
متن کاملAnisotropic turbulence in rotating magnetoconvection
Numerical simulations of the 3D MHD-equations that describe rotating magnetoconvection in a Cartesian box have been performed using the code NIRVANA. The characteristics of large-scale quantities like the turbulence intensity and the turbulent heat flux that are caused by the average action of the small-scale fluctuations are computed directly from the fluctuating primitive variables. and the e...
متن کاملHeat and momentum transfer for magnetoconvection in a vertical external magnetic field.
The scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)JFLSA70022-112010.1017/S0022112099007545] for turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. A comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows us to restrict the parameter s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 4 شماره
صفحات -
تاریخ انتشار 2015